REDES NEURONALES PARA LA CONDUCCIÓN AUTÓNOMA

Aunque Nvidia es conocida por sus tarjetas gráficas para computadores, en los últimos años se ha convertido en una empresa de vital importancia para la industria del automóvil. Porsche Engineering descubre la clave del éxito de Nvidia, cómo ha llegado a liderar el campo de la inteligencia artificial y cuál es su visión de futuro.

Los conductores que suelan utilizar navegadores en sus desplazamientos estarán familiarizados con este problema: si los carriles de una carretera están muy juntos, el sistema no sabe en cuál se encuentra el vehículo. El GPS no es lo suficientemente preciso para reconocerlo, ya que solo está capacitado para determinar la posición en un rango de dos a diez metros. Porsche Engineering está trabajando en un sistema que utiliza inteligencia artificial (IA) para calcular una posición más precisa a partir de los datos del GPS. “Esto hace posible, por ejemplo, identificar la trazada ideal en un circuito”, dice el Dr. Joachim Schaper, Responsable de Inteligencia Artificial y Big Data en Porsche Engineering. Los cálculos necesarios pueden ser realizados en el propio vehículo, mediante un ordenador compacto equipado con unidades de procesamiento de gráficos (GPU). “Esto permite sacarle partido a la funcionalidad de la inteligencia artificial en el auto”, dice Schaper.

La compañía Nvidia, con sede en Santa Clara (California), tiene cerca de 13 800 trabajadores.

La plataforma de hardware pertenece a Nvidia, con sede en Santa Clara (California, Estados Unidos). “Cuando escuchas el nombre, no piensas necesariamente en el sector automotriz”, dice Schaper. Los usuarios de computadores personales suelen asociar Nvidia a las tarjetas gráficas. O, mejor dicho, a tarjetas gráficas especialmente rápidas. Esta buena reputación del fabricante estadounidense se remonta a principios de la década de 2000, cuando salieron al mercado los primeros videojuegos con gráficos 3D elaborados. En aquel momento, quienes quisieran disfrutar de Quake 3 o Far Cry, entre otros juegos, sin saltos de pantalla necesitaban un hardware potente. Y rápidamente se hizo conocida la tarjeta gráfica GeForce, de Nvidia. Se convirtió en un éxito de ventas y llevó a la empresa, fundada en 1993, a los primeros puestos de fabricantes de hardware. A comienzos del nuevo milenio, la empresa facturaba más de tres mil millones de dólares.

Investigadores de IA como nuevo grupo de clientes

A principios de la década de 2010, Nvidia se dio cuenta de que había aparecido en escena un grupo completamente nuevo de clientes que no estaban interesados en los juegos de computador. Se trataba de los investigadores de inteligencia artificial. Había corrido la voz en la comunidad científica de que las GPU eran perfectamente adecuadas para cálculos complejos en el campo del aprendizaje automático. A la hora de crear algoritmos de IA, las GPU que realizan operaciones de manera paralela son claramente superiores a los procesadores secuenciales convencionales (unidades centrales de procesamiento o CPU) y pueden reducir significativamente los tiempos de cálculo.

Tecnología para conducción autónoma: el hardware Drive-AGX Pegasus, de Nvidia, es utilizado en robótica, entre otras aplicaciones. La empresa también desarrolla redes neuronales en sus propios centros de datos

Nvidia reconoció la oportunidad antes que la competencia y lanzó al mercado el primer hardware optimizado para IA en 2015. Fue en ese momento cuando la compañía se centró de inmediato en el sector del automóvil con el lanzamiento de la plataforma Nvidia Drive. El sistema PX 1 era capaz de procesar imágenes de 12 cámaras conectadas y ejecutar simultáneamente programas para evitar colisiones o monitorizar al conductor. Tenía una potencia equiparable a más de 100 computadores portátiles. Varios fabricantes utilizaron la plataforma para llevar los primeros prototipos de vehículos autónomos a la carretera.

Crecimiento constante en el sector automotriz

Inicialmente, Nvidia llevó a cabo una estrategia basada en el hardware, suministrando procesadores a los fabricantes de partes originales (OEM). En este momento, el negocio del sector de automotriz está asentado sobre dos pilares: los sistemas gráficos de las pantallas del interior del auto y el hardware para las funciones de conducción asistida o automatizada. El año pasado, las ventas de Nvidia en el sector del automóvil ascendieron a 700 millones de dólares, lo que corresponde a seis por ciento de sus ventas totales; el volumen de negocio en este campo, no obstante, crece de manera constante desde 2015. Jensen Huang, fundador y CEO de Nvidia, ve aquí grandes oportunidades de mercado. “Los vehículos del mañana son superordenadores de inteligencia artificial rodantes. En un futuro solo sobrevivirán dos de las numerosas unidades de control que hay ahora: una para la conducción autónoma y otra para la experiencia de usuario”, asegura.

Para lograr una presencia aún más sólida en el mundo del automóvil, Nvidia ha cambiado su estrategia: la empresa ya no se centra únicamente en los chips, sino que ofrece un paquete completo de hardware y software. “Los clientes pueden crear su propia solución y ahorrar en el desarrollo de base”, explica Ralf Herrtwich, Director de Software de Automóvil de Nvidia. Un fabricante que quiera ofrecer un vehículo semiautónomo puede obtener tanto el hardware para evaluar las imágenes de la cámara como las redes neuronales de Nvidia, por ejemplo, para implementar un sistema de reconocimiento de señales de tráfico. Este sistema modular es abierto, a diferencia de lo que suele ser habitual. “Todas las interfaces quedan a la vista. De este modo, el fabricante puede adaptar el sistema a sus propios requerimientos”, explica Herrtwich.

Los productos de Nvidia son ‘sistemas en chips’

Con esta estrategia de apertura que permite la adaptación por parte del cliente, la empresa estadounidense tiene como objetivo expandir su negocio al máximo, lo que en última instancia también impulsa el desarrollo de los productos. “Podemos optimizar mejor nuestro hardware si sabemos cómo lo utilizan nuestros clientes”, explica Herrtwich. Y ofrece un ejemplo: la mayoría de los productos de Nvidia son ‘sistemas en chips’ (SoC por sus siglas en inglés). Esto significa que un procesador se combina con otros componentes electrónicos en un semiconductor. El sector de la automoción utiliza chips con entradas de vídeo integradas a las que son conectadas cámaras externas. Pero ¿cuántas entradas de información son necesarias? ¿Cómo debe ser diseñada la conexión de red? Estas preguntas solo pueden ser respondidas si existe un contacto estrecho con los clientes, dice Herrtwich. El experto en inteligencia artificial Schaper tiene una opinión similar: “La información de otros fabricantes de equipos originales es importante”. En el momento actual, es fundamental trabajar de manera conjunta en los procesos de desarrollo.

Ralf Herrtwich, Director de Software de Automóvil de Nvidia.

Además de hardware y software, Nvidia también ofrece a los OEM el acceso a su propia infraestructura. Por ejemplo, los fabricantes pueden colaborar en la formación de redes neuronales en los centros de datos de Nvidia, donde miles de GPU funcionan en paralelo. Hay que tener en cuenta que un algoritmo de conducción autónoma primero debe aprender a reconocer a un peatón, un árbol u otro vehículo. Para ello, son utilizadas millones de imágenes de tráfico real sobre las que han sido marcados manualmente los objetos correspondientes. Mediante ensayo y error, el algoritmo aprende a identificarlos. Este proceso requiere mucho trabajo (como etiquetar los objetos) y requiere una gran capacidad informática.

Tres preguntas para Ralf Herrtwich

¿Cuándo llegará la inteligencia artificial (IA) al automóvil?
En realidad, ya llegó. Está en el interior de algunos autos actuales. Varios fabricantes ofrecen control por voz basado en IA como parte de los sistemas de infoentretenimiento. Además, los vehículos son cada vez más capaces de percibir su entorno y reaccionar ante las situaciones que les sean plantadas, como demuestran los sistemas de asistencia a la conducción. En este campo, el de los asistentes, la inteligencia artificial desempeña un papel cada vez más importante. Esperamos que esta área avance en la IA en su conjunto.

¿Cuándo se hará realidad la conducción autónoma?
Los vehículos autónomos ya están siendo probados en áreas controladas, especialmente en lugares donde hace buen tiempo. Sin embargo, por el momento vemos la aplicación en el mercado particular como un soporte a la conducción; es decir, haciendo uso de los tres primeros niveles de autonomía. En general, los próximos años se caracterizarán por una competencia entre dichos sistemas, es decir, por la cuestión de cuál de ellos puede dominar la mayoría de las situaciones.

¿Cómo cambia la inteligencia artificial el ecosistema automotriz?
Cuanto más relevantes se vuelven las funciones de software, más cambia el papel de los proveedores de nivel 1, que son los de mayor importancia en la cadena de suministro. En el futuro, podemos imaginar una constelación triangular: los OEM trabajarán con empresas de tecnología como Nvidia en el desarrollo de procesadores y módulos de software, mientras los proveedores de nivel 1 fabricarán la unidad de control.

Por qué las GPU son los mejores computadores de inteligencia artificial

Las unidades de procesamiento de gráficos (GPU) están especializadas en realizar cálculos geométricos que permiten girar un cuerpo en la pantalla, acercar o alejar la imagen. Son particularmente buenas realizando los cálculos matriciales y vectoriales necesarios para ello. Esta es una ventaja en el desarrollo de redes neuronales, cuya estructura es similar al cerebro humano y constan de varias capas en las que la información es procesada. Para entrenar estas redes, las multiplicaciones de matrices son clave y esta es justo la especialidad de las GPU. Además, tienen mucha memoria para almacenar resultados intermedios y modelos de manera eficiente.

Otro punto a favor de las GPU es su capacidad para procesar tareas que pueden ser realizadas en paralelo, ya que pueden hacerlo mucho más rápido que los procesadores convencionales (CPU). Cuando se trata de redes neuronales, son capaces de reducir el tiempo de desarrollo hasta en 90 por ciento.

Loading